M. Jackson Marr, PhD

M. Jackson (Jack) Marr received the B.S. degree in 1961 from Georgia Tech where he studied mathematics, physics, engineering, and psychology. He received a Ph.D. in experimental psychology with a minor in physiology from the University of North Carolina at Chapel Hill in 1966. He is Professor Emeritus of Psychology at Georgia Tech where he has taught courses in physiology and behavior, behavioral pharmacology, probability & statistics, and the core course in the experimental analysis of behavior. He is one of five founding Fellows of the Association for Behavior Analysis, a Fellow of Division 25 (Behavior Analysis) and Division 3 (Experimental Psychology) of the American Psychological Association (APA), a Fellow of the Psychonomic Society, and a Federation of Associations in Behavioral and Brain Sciences Honoree. He was elected twice (the last in 2015) to President of the Association for Behavior Analysis (ABAI) and served twice as President of the Society for the Advancement of Behavior Analysis (SABA), and as President of Division 25 (Behavior Analysis) of APA and the Southeastern Association for Behavior Analysis (SEABA). He was also APA Council member representing Division 25. He is the past Editor of Behavior and Philosophy and continues to serve on its editorial board. He also serves as Review Editor of the Journal of the Experimental Analysis of Behavior, a position he has held since 1998. He served as the Co-Editor of Revista Mexicana de Análisis de la Conducta and was an Associate Editor of the Journal of the Experimental Analysis of Behavior and The Behavior Analyst. He was Experimental Representative to the Executive Council of the Association for Behavior Analysis, served on the Board of Directors of The Society for the Quantitative Analysis of Behavior (SQAB), and currently serves on the Board of Trustees the Cambridge Center for Behavioral Studies. He has been particularly active in the international support and development of behavior analysis in Great Britain, Europe, Mexico, Brazil, China, and the Middle East. He was a Research Fellow in Pharmacology at Harvard Medical School, a visiting professor at the Universidad National Autonoma de Mexico, and the first Eminent Scholar invited to Jacksonville State University. He was a Navy contractor for Project Sanguine in a study of possible behavioral effects of extremely low frequency electromagnetic fields. As an AIEE Senior Fellow at the Naval Aerospace Medical Research Laboratory, he conducted research on the effects of microwaves as reinforcers for operant behavior and the effects of stimulant drugs on sustained military flight performance. For over 20 years (1991-2012) he was involved through NSF grants and other support in the assessment and improvement of engineering education. This work included design of instructional systems to teach classical mechanics and electromagnetism in calculus-based engineering physics using methods derived from applied behavior analysis of skill acquisition and the cognitive science of problem solving. Current scholarly interests include dynamical systems theory, the quantitative analysis of behavior, creativity, and theoretical/conceptual issues in behavioral analysis.

The Creative Tripod: The Stitching and the Unstitching Revisited

There are no undebated definitions of “creativity,” and any definition will reflect how this rich topic is treated. Nearly 20 years ago I discussed how behavior analysis might contribute—or not—to an understanding of creativity. I revisit this topic, expanding on some issues and reconsidering others. As before, my focus is on scientific and mathematical accomplishments, which, though tied closely to Weisberg’s placement of creative achievements in the domains of problem-posing and problem-solving, places emphasis on the extraordinary and productive giftedness of certain individuals. From the massive empirical, theoretical, and historical literature at least three essential and dynamically interlocking dimensions of their creative achievements emerge: talent, expertise, and motivation. I emphasize “interlocking” because the productive expression of each of these elements depends on the others. The role of behavior analysis in these elements is modest, at best. It has nothing to say about talent—and even in some cases might deny its role altogether. As for expertise, with some notable exceptions, behavior analysis has had little to say about the acquisition of truly complex performances; this has been left to other fields. As for motivation, one must go well beyond naïve “pleasure and pain” accounts to more elusive, yet more powerful behavior-consequence relations. Many challenges to understanding remain for all behavioral scientists.

continued
Participants will be able to:

- Discuss some basic definitions of creativity.
- Identify some methods to study creativity.
- Discuss some examples of the interlocking of talent, expertise, and motivation in major creative achievements in mathematics and science.
- Identify some potential contributions and limitations of behavior analysis in these three processes.
- Identify some issues challenging all behavior science to our understanding of these processes.

Kent A. Corso, PsyD, BCBA-D

Dr. Kent A. Corso is a licensed clinical psychologist and board-certified behavior analyst. His career in suicidology began almost two decades ago, while serving as an officer in the U.S. Air Force. Dr. Corso has researched, developed programs and trained others to implement evidence-based methods of suicide prevention and intervention nationally and internationally. He has published numerous peer-reviewed research papers and with his expertise in behavior analysis, is a leading expert in novel scientific methods and digital technologies for analyzing variables and patterns associated with suicide.

Broadening the Reach of Behavioral Science

In 2014, 60 percent of all ABA job postings were in autism spectrum disorders, while intellectual and developmental disabilities and education comprised 24% of total listings. This suggests that 84% of jobs in ABA are centered around 0.4% of the U.S. population. Can’t ABA help those who do not have autism or intellectual disabilities? Isn’t ABA useful in non-healthcare and non-education contexts? Behavior is all around us and is integral in everything from politics to science, engineering and business. There are many benefits to disseminating the science of human behavior more broadly. But how will this occur? Which academic programs extend beyond the limits of the current behavioral real estate? Which ABA organizations forge relationships with organizations outside of education, autism and disabilities communities? This discussion will explore several ways academia and professional organizations can expand the reach of our behavioral science. It will conclude with suggestions for individual ABA practitioners, citing examples of where broader applications have already occurred.

Participants will be able to:

- Identify the current limited reach of ABA compared to the size of the U.S. population.
- Explain the importance of disseminating behavioral science more broadly.
- Integrate what they’ve learned to develop solutions for expanding the reach of ABA outside of fields of autism, education and healthcare.